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Abstract—In batch production systems, detecting low-yield1

machines is essential for minimizing the production of defective2

pieces, which is a complex problem that currently requires3

multiple experts, considerable capital, or a combination of both4

to overcome. To solve this problem, we proposed a cost-efficient5

and straightforward method that involves using maximum like-6

lihood estimation and bootstrap confidence intervals to estimate7

per-machine yield; this method enables identification of low-8

yield machines and generation of a list of these machines.9

Manufacturing engineers can use the list to perform necessary10

verification and maintenance processes. Before implementing this11

method, a manufacturer with 50–500 machines should build a12

dataset containing approximately 6–20 times as many batches13

as there are production machines. When this condition is met,14

the proposed method can be used effectively to detect up to five15

low-yield machines.16

Index Terms—Batch production, expectation–maximization17

(EM) algorithm, machine maintenance suggestion, per-machine18

yield estimation.19

I. INTRODUCTION20

IN THE manufacturing industry, the demand for highly21

customized products is increasing [1]. To meet this demand,22

a manufacturer can use a batch production system, which23

involves numerous production machines, various production24

flows, and the production of numerous batches of products [2].25

Because a production process is often complex, numerous26

types of defects may occur because of various causes [3].27

In this context, a low-yield machine is a key indication28

that a high number of defective products may be generated29

for various reasons, including poor machine conditions and30

misconfiguration [4]. This is a challenge for manufacturers that31

are striving to achieve zero-defect manufacturing (ZDM) [5],32

especially those that are using batch production systems.33

Although the practical implementation of ZDM is challenging,34
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manufacturers tend to be willing to take any reasonable 35

measures to achieve or work toward ZDM [6]. Accordingly, 36

detecting and maintaining low-yield machines are crucial to 37

achieving ZDM. Numerous studies have proposed product- 38

oriented or process-oriented diagnosis methods for doing so 39

(Table I) [6]. In product-oriented diagnosis, defective products 40

are investigated to detect service machines that generate prod- 41

uct defects. In process-oriented diagnosis, a machine health 42

monitoring system is implemented for every machine to detect 43

problematic machines and facilitate maintenance scheduling. 44

In practice, process-oriented and product-oriented diagnoses 45

can be combined to complement each other. A manufacturer 46

may implement product-oriented diagnosis methods such as 47

root cause analysis (RCA) [7], [8], [9], [10], [11], [12]. The 48

flow of RCA-based methods can be conceptually divided into 49

three major steps. First, a manufacturer must perform product 50

defect detection and collect analytical data on defects. Second, 51

expert engineers must analyze the defect data to identify the 52

root cause. Third, these engineers service or adjust the man- 53

ufacturer’s production machines on the basis of the analysis 54

results. Generally, RCA-based methods consider numerous 55

parameters [8], [11]. Machine learning can be applied to 56

build automated models for conducting RCA, but this type 57

of analysis is currently still labor intensive for experts, as 58

shown in Table I. Moreover, in a batch production system, the 59

dependency on expert knowledge is high, and the training data 60

provided for machine learning may be insufficient [8]. 61

Alternatively, a manufacturer may apply process-oriented 62

methods, which involve the use of machine-condition- 63

monitoring sensors and a prognostics and health management 64

(PHM) system [13], [14], [15], [16], [17], [18], [19], [20]. 65

Conceptually, the flow of PHM-based methods can be divided 66

into three major steps. First, data collection is performed; to 67

achieve this, a manufacturer usually deploys numerous mon- 68

itoring sensors and controllers for each production machine. 69

Second, because numerous parameters are used in sensor data, 70

a machine learning or deep learning model is usually used 71

to extract data features. Third, engineers must be notified 72

when a fault is identified through a PHM-based method. 73

These engineers then verify the health conditions of the 74

identified machines and plan a suitable maintenance schedule. 75

PHM-based methods are widely used in the manufacturing 76

industry, but several challenges must be addressed, including 77

false alarms and machine misconfigurations [4], [13], [17]. In 78

addition, this method incurs a high initial cost and is only 79

affordable for large manufacturers (Table I) [14]. 80
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TABLE I
COMPARISON OF METHODS FOR DETECTING LOW-YIELD MACHINES

Although existing machine diagnosis methods (e.g., RCA81

and PHM) can be used to detect machines with low yields82

and identify their failures, these methods are generally either83

labor intensive (because of the involvement of human experts)84

or costly to implement (Table I). Consequently, small- and85

medium-sized manufacturers are likely to encounter chal-86

lenges in implementing these methods. To address these87

limitations, we proposed an alternative method for detecting88

low-yield machines. The proposed method uses historical per-89

batch production data and maximum likelihood estimation90

(MLE) to estimate per-machine yield. MLE can be performed91

by applying the expectation–maximization (EM) algorithm.92

Subsequently, the results of the per-machine yield estimation93

can be used to identify low-yield machines. Fig. 1 illustrates94

how the proposed method can be used to quickly identify and95

quantify the number of low-yield machines on the basis of96

production data; this process can be performed without the97

involvement of human experts. In addition to using the results98

of the proposed method, engineers can leverage multimodal99

data sources (e.g., PHM and RCA) and machine learning to100

develop a decision support system that can obtain detailed101

information regarding failures or problems related to the102

identified low-yield machines [21], [22].103

This proposed method can be categorized as a product-104

oriented method, and it is based on a study that performed105

per-machine yield estimations to predict per-batch yield for106

the next 1–4 weeks [2]. Although the method used in that107

study allows for machine yield to be estimated, the obtained108

estimation results are insufficiently reliable because of two109

limitations. First, it does not consider the frequency with which110

a machine is used. Second, it tends to identify the machines111

used in earlier batch production steps as having a greater112

probability of being low-yield machines relative to those used113

in later production steps.114

To overcome these limitations, we proposed a method that115

employs an improved EM-based algorithm [2]; this algorithm116

incorporates per-machine miss rate as a variable to estimate117

the tolerance of each inspection equipment. We also included118

an additional step, that is, obtaining the confidence intervals of119

Fig. 1. Illustration of the proposed method relative to recent studies.

per-machine yield estimations and then performing hypothesis 120

testing to narrow down the number of low-yield machine 121

candidates. By considering the dynamic accuracy of inspection 122

devices and large production batches, we further analyzed 123

the number of observed defective pieces, enabling the iden- 124

tification of low-yield machines that may require immediate 125

maintenance. 126

Furthermore, we performed simulation experiments to val- 127

idate the function of the proposed method. Because actual 128

per-machine yield data are unavailable, we conducted simu- 129

lations to generate per-machine yield and batch production 130

data. In addition, we designed our simulation to explore the 131

minimum dataset size required for the proposed method to 132

successfully detect low-yield machines. Subsequently, under 133

the proposed method, production data is used as an input 134

to estimate per-machine yield. On the basis of our simu- 135

lation experiment results, the proposed method was applied 136

to effectively detect low-yield machines when a given con- 137

dition was met. To effectively detect up to five low-yield 138

machines, manufacturers with 50–500 machines must collect 139

approximately 6–20 times as many batches of production 140

data as there are production machines. However, using fewer 141

batches of production data may lead to less reliable results 142

(see Section IV for a detailed explanation). In practice, a large 143

manufacturer should be able to obtain this amount of data 144

within a day and to apply the proposed method for analyses 145

on a daily basis. For small manufacturers, the feasible time 146

frame for completing these tasks is approximately one week. 147

The contributions of this study are as follows. 148

1) The proposed method is straightforward (only uses the 149

common production data with a few parameters) and 150

cost efficient (does not require experts or investment to 151

obtain additional sensors or hardware) compared with 152

other RCA and PHM methods. 153

2) The proposed method employs MLE and bootstrap con- 154

fidence intervals to estimate per-machine yield, which 155

can then be used to detect low-yield machines for 156

the purpose of facilitating maintenance scheduling. The 157

method was validated using simulation datasets in our 158

experiments. 159



IE
EE P

ro
of

ADIPRAJA et al.: DETECTING LOW-YIELD MACHINES IN BATCH PRODUCTION SYSTEMS 3

The proposed method can be used to improve production160

management. First, it can be used to enhance maintenance161

planning because it can quickly identify low-yield machines,162

thereby reducing the time required to identify the root causes163

of manufacturing problems. In addition, it can help manufac-164

turers minimize the occurrence of defects and work toward165

achieving zero defects in future production. Second, because166

the proposed method requires only a few parameters derived167

from production data and does not involve human experts,168

it is more cost-effective than other recently developed RCA169

methods are. Thus, a manufacturer with limited resources170

can easily adopt this method. Furthermore, if a larger budget171

becomes available, they can combine the proposed method172

with RCA and PHM to obtain more detailed results.173

The remainder of this article is organized as follows.174

Sections II and III describe the proposed method for generating175

a list of low-yield machines that may require immediate main-176

tenance. Section IV discusses the simulation design and results177

and the practical considerations for the proposed methods. The178

final section concludes the study.179

II. PROPOSED METHOD180

The two major functions of the proposed method are181

described in Figs. 2 and 4, respectively. In the first function,182

per-machine yield estimation is performed in accordance with183

steps (1)–(6) of Fig. 2, and the mathematical formulation of184

step (4) is explained in Section III. Because each production185

machine is most likely used differently during a batch produc-186

tion process, estimated per-machine yield obtained from small187

samples is less reliable than that obtained from large samples.188

To address this challenge, for the first function, we combined189

resampling with the bootstrapping method [23] to calculate190

each per-machine yield with a confidence interval, and we191

excluded the machines with a high yield or high standard192

deviation to obtain a final sorted list of low-yield machines in193

the second function, which operates in accordance with steps194

(1)–(9) of Fig. 4.195

A. Overview of Per-Machine Yield Estimation196

To perform per-machine yield estimation (Fig. 2), the batch197

production dataset must be preprocessed and reformatted198

(Table II). Data preprocessing comprises three major tasks199

(step 1 in Fig. 2). First, the data related to manual or human200

labor are excluded because the objective is to detect low-yield201

machines. Second, when no data pertaining to the observed202

defective pieces in a machine are collected because of the203

absence of inspection equipment, the parameters for these204

pieces are set to zero for the machine. Third, the multiple205

consecutive batch steps that are applied to the machine are206

merged into one batch step (including the number of observed207

defective pieces).208

According to a study [2], machine yield estimations are209

highly influenced by the number of observed defective pieces210

and the number of batches for which a machine is used. When211

the EM algorithm is used to analyze a dataset, a single set of212

per-machine yield data may be produced; among these per-213

machine yield data, some may be more reliable than others214

Fig. 2. Proposed method for estimating per-machine-yield.

TABLE II
EXAMPLE OF REQUIRED PRODUCTION DATA

because the EM algorithm provides a more accurate estimation 215

for the machines processing a larger number of batches than 216

for those processing a smaller number of batches. To examine 217

the reliability of per-machine yield estimations, more samples 218

must be used to obtain the confidence interval for each 219

estimated per-machine yield. To this end, we resampled a batch 220

production dataset to randomly select 80% of the records in the 221

dataset (i.e., step 3 in Fig. 2). With this technique, the required 222

number of subdatasets can be generated. We set the number 223

of subdatasets to 30 (i.e., step 2 in Fig. 2). Subsequently, we 224

applied the EM algorithm to the resampled subdatasets and 225

obtained 30 datasets of per-machine yield (i.e., steps 4 and 5 226

in Fig. 2). Finally, we applied the bootstrapping method [23] 227

to estimate the approximate confidence intervals of the per- 228

machine yield (i.e., step 6 in Fig. 2). The bootstrapping 229

method is a promising method for constructing confidence 230

intervals. This is supported by a study [23] that demonstrated 231

its usefulness in estimating confidence intervals for quantifying 232

uncertainty regarding the locations of multiple change points. 233

Two major parameters are used in the first function, the size 234

of a resampled dataset and the number of resampled datasets. 235

Several studies have demonstrated that for the bootstrapping 236

method, a sample size of ≥30 is usually sufficient [24], [25], 237
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Fig. 3. Threshold and bootstrap confidence intervals of per-machine yield
estimation as obtained through one-sided hypothesis testing.

[26]. Therefore, we collected a minimum of 30 samples for238

each estimated per-machine yield because each run of the239

EM algorithm requires considerable processing time. For the240

resampling of the original dataset, we performed random sam-241

pling to select 80% of the records in the dataset. Two factors242

must be considered for this parameter. First, an objective is243

to create as many variations as possible for each resampled244

dataset; thus, resampled datasets must be differentiated from245

each other to the greatest extent. Second, the EM algorithm246

requires a large dataset to estimate per-machine yield [2]; thus,247

the size of a resampled dataset should be maximized. On the248

basis of our experience, we used 80% of a dataset to ensure249

the quality of EM estimations while maintaining a favorable250

variation for the 30 resampled datasets. Notably, the 80% value251

is configurable and may be reduced when a larger dataset is252

used as the basis for obtaining resampled datasets. This topic253

is further discussed in Section IV-C.254

B. Obtaining Low-Yield Machine List255

The second function of the proposed method is to generate256

a low-yield machine candidate list by performing one-sided257

hypothesis testing. The one-sided hypothesis test (or one-258

tailed test) is a test of statistical significance that is performed259

to determine whether a given sample is significantly greater260

or less than a given threshold value. For each machine, the261

bootstrap method in the first function should provide the boot-262

strap confidence interval of its yield estimation. However, we263

limited the number of low-yield machine candidates because264

a manufacturer may have hundreds of machines; we averaged265

all per-machine yield estimates and used the resulting global266

average as a threshold value. This predefined threshold was267

then used to distinguish between low- and high-yield machines268

through a one-sided hypothesis test.269

Therefore, for a per-machine yield estimation obtained270

through bootstrapping, a low-yield machine is identified when271

the two following conditions are met.272

1) The machine yield estimate is less than the predefined273

yield threshold.274

2) The threshold position is within the critical area of the275

machine yield estimation (p < 0.05).276

On the basis of these two conditions, we determined whether277

a particular machine yield was significantly less than the278

average.279

A yield threshold can be defined using the global average of280

all per-machine yields (Fig. 3). Subsequently, to obtain a low-281

yield machine candidate list, the machines with estimated yield282

Fig. 4. Proposed method for obtaining a low-yield machine candidate list.

that are significantly less than the threshold must be identified. 283

That is, in the one-sided hypothesis test, the p-value of the 284

threshold must be calculated using the per-machine bootstrap 285

confidence interval. In Fig. 3, the p-value of the threshold is 286

<0.05 for MCH1 and MCH2 but >0.05 for MCH3. Therefore, 287

MCH3 is excluded from the low-yield machine candidate list; 288

MCH4 is also excluded because its yield is greater than the 289

threshold. 290

Before performing the second function, a manufacturer 291

must predefine the maximum number of low-yield machine 292

candidates (e.g., 10). Fig. 4 illustrates the steps for performing 293

a one-sided hypothesis test until a low-yield machine candidate 294

list is obtained. The p-value of the yield threshold relative to 295

the yield bootstrap interval of the corresponding machine is 296

also estimated (i.e., step 4 in Fig. 4). At this point, the yield 297

threshold has an independent p-value for each machine. It is 298

then used to determine whether a given machine is retained 299

or removed as a low-yield machine candidate (i.e., step 5 in 300

Fig. 4). Finally, after the final low-yield machine candidate list 301

is obtained, it is provided to maintenance engineers. 302

III. ESTIMATION OF PER-MACHINE YIELD 303

This section explains how the proposed method estimates 304

per-machine yield (i.e., step 4 in Fig. 2). First, the reasonable 305

assumptions applied for the proposed method are introduced. 306

Second, the concept of inspection equipment miss rate is 307

explained. Finally, mathematical notations are used to describe 308

the proposed method for estimating per-machine yield. 309

A. Assumptions Applied for Proposed Method 310

The objective of the proposed method is to obtain a low- 311

yield machine list that can be used as maintenance reference. 312
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Fig. 5. Implementation of inspections and detection of defective pieces during batch production.

Because numerous factors can affect production yield and313

defect observability, several reasonable assumptions must be314

made to develop a specific model for batch production315

systems. The assumptions are as follows.316

1) Dominant Factor for Production Yield: We assumed that317

defective pieces are caused by production machines.318

In practice, a defective product may be affected by319

numerous factors, including human operators, types of320

machines used, quality of raw materials, complexity321

of product designs, and manufacturing methods and322

environments [3], [27].323

2) Defect Observability: We assumed that when a machine324

with inspection equipment detects defective pieces, the325

defects could have been caused by any of the machines326

used before this inspection step is performed. This327

is because inspections can only be conducted during328

specific manufacturing steps.329

3) Removal of Defective Pieces: On the basis of the330

first-pass yield [28], the yield of a batch is deter-331

mined to be equal to the product of the machine332

yield of all involved machines (assuming that defective333

pieces are not reworked or corrected). We assumed that334

when defects are detected by inspection equipment, the335

defective pieces are promptly removed. Only nonde-336

fective pieces (including unobserved defective pieces)337

are processed in the next step. Usually, a manufacturer338

may commit additional human resources to determine339

whether defective pieces can be reworked [29]. However,340

we did not consider this step in our proposed method341

because of the first assumption, that is, that only342

machine-related factors are considered.343

B. Inspection Equipment Miss Rate344

In a batch production system, a batch of products may345

be inspected several times during a manufacturing process346

(Fig. 5). The observed results of an inspection process reveal347

the number of defective pieces produced during a specific348

inspection step, and this information is crucial for esti-349

mating per-machine yield. In practice, inspections are only350

performed during specific steps. Therefore, identifying the351

specific machine responsible for each defect of each produced352

piece is infeasible. This problem was addressed in a study [2];353

specifically, when a defective piece was detected by an354

inspection machine during a given manufacturing step, all355

the machines involved in the preceding manufacturing steps356

and the current one become suspects. The method applied in357

that study [2] allows for per-machine yield to be estimated;358

however, a problem with this method is that the machines 359

involved in earlier batch steps tend to have lower estimated 360

per-machine yield relative to the machines involved in later 361

batch steps. 362

To address this problem, we improved the method by con- 363

sidering the accuracy of inspection equipment. Several studies 364

have demonstrated that the accuracy of inspection equipment 365

has a tolerance of approximately 10%–30% [30], [31]. This 366

finding indicates that some defective pieces may be unde- 367

tected during an inspection step and transferred to subsequent 368

batch steps. Manufacturing steps can be divided into multiple 369

sequences of steps on the basis of inspection steps. For 370

example, in Fig. 5, if defective pieces are detected during 371

an inspection step that occurs within a given sequence, all 372

the machines involved in that sequence are more likely to be 373

the cause of the defects relative to the machines involved in 374

preceding sequences. 375

In Fig. 5, seven manufacturing steps involving five machines 376

are presented, all inspection steps are assumed to have a 377

10% tolerance, and defective pieces are assumed to have been 378

detected in the final machine (rightmost machine, M5). In this 379

scenario, all the machines involved in the sequence in which 380

the defects were detected (i.e., the sixth [M7] and seventh 381

[M5] machines) have an overall 90% probability of being the 382

cause of the defects. Conversely, the machines involved in the 383

first to fifth steps only have an overall 10% probability of 384

being the cause of the defects; specifically, those involved in 385

the first and second steps (M4 and M5) only have an overall 386

1% probability of being the cause of the defects (10% of 10% 387

probability). 388

C. Complete Equations of EM Algorithm 389

The notations used in this study are defined in Tables III 390

and IV. Specifically, Table III contains all the notations rep- 391

resenting known values that can be extracted from real-world 392

data, and Table IV contains all the notations representing the 393

variables that are initially unknown and must be subsequently 394

estimated. 395

In this study, per-machine yield was estimated on the basis 396

of the principle of likelihood. That is, if several batches contain 397

newly produced defective pieces after a specific machine is 398

used, the estimated yield of that machine should be low. 399

Therefore, we developed a likelihood function for each man- 400

ufacturing step to estimate per-machine yield, which can be 401

expressed as (1) and (2). For the per-machine yield θ , several 402

zink values may affect yin. If yin is detected as a defective piece 403

(yin = 1), one of the corresponding zink values should be 1. 404
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TABLE III
LIST OF NOTATIONS WITH PREVIOUSLY KNOWN VALUES

In contrast, all corresponding zink values should be 0, if yin is405

detected as a nondefective piece (yin = 0). Let Y be the set406

of yin and Z be the set of zink for each manufacturing step.407

When all batches are considered, the likelihood function of Y408

and Z given per-machine yield θ can be defined as P(Y, Z|θ).409

P(Y, Z|θ) can be calculated by considering the condition of410

each piece in each batch that undergoes a manufacturing411

process, and the equation applied is as follows:412

P(Y, Z|θ) =
I∏

i=1

Ni∏

n=1

⎛

⎜⎝(FDin)
yin ×

⎛

⎝
Cin∏

k=1

Pik

⎞

⎠
1−yin

⎞

⎟⎠ (1)413

where414

FDin =
Cin∏

k=1

⎛

⎝
(

(1 − Pik)

k−1∏

s=1

Pis

)⎛

⎝(1 − ai;Cin

) Ci;n−1∏

v=k

aiv

⎞

⎠

⎞

⎠
zink

. (2)415

If no defective pieces are present (all yin = 0), the likelihood416

of all per-machine yield θ would be 1. Otherwise, when417

yin = 1, the corresponding zink can be calculated by using418

FDin by applying (2), which can be used to calculate the419

likelihood of a defect occurring on the basis of the yield of the420

corresponding production machines (i.e., production steps).421

TABLE IV
LIST OF NOTATIONS WITH UNKNOWN INITIAL VALUES

Furthermore, as explained in Section III-B and illustrated 422

in Fig. 5, when a defective piece is detected during a given 423

inspection step, the production steps occurring between that 424

inspection step and the previous inspection step exhibit a 425

considerably greater likelihood of causing the defect relative to 426

the other production steps. Therefore, we must determine the 427

likelihood value of each corresponding production machine by 428

considering the miss rate of each machine (represented by aiv). 429
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Fig. 6. Activity diagram demonstrating application of an EM-based algorithm
of the proposed method to estimate per-machine yield.

To estimate per-machine yield per step (4) (Fig. 2), we430

developed a novel EM algorithm that comprises three main431

stages (Fig. 6). First, the algorithm calculates the initial values432

of various parameters, including per-machine yield Pr(M) and433

per-machine miss rates AM , which are calculated per steps434

(a) and (b), respectively, in Fig. 6. Second, it performs an435

estimation (E-step) and updates parameter values (M-Step)436

per steps (c)–(i) in Fig. 6. Third, it iteratively improves the437

estimation until the stop condition is met and finally outputs438

the optimal estimation for per-machine yield.439

During the initialization stage, the proposed algorithm maps440

each batch step to a production machine. That is, the jth441

manufacturing step of the ith batch should be mapped to a442

given machine M. Therefore, the manufacturing steps for a443

batch that uses machine M can be defined using the following444

function:445

SProd(M) = {(i, j)|∀mij = M}. (3)446

For example, per Table II, SProd(54) = {(13, 2),447

(13, 5), (62, 1)}, indicating that MCH54 was used in the448

second and fifth manufacturing steps of the 13th batch and the449

first manufacturing step of the 62nd batch.450

Subsequently, the initial per-machine yield and initial per-451

machine miss rates should be calculated per steps (a) and452

(b) (Fig. 6). Instead of applying the random guess method,453

the algorithm calculates initial per-machine yield using the454

following formula:455

argmin
θ

I∑

i=1

( Ji∑

k=1

qik − ln li

)2

(4)456

where qik ≤ 0. Therefore, the yield of machine M, Pr(M), 457

can be obtained by calculating the natural exponent of each 458

element in θ . 459

The algorithm must also calculate the initial per-machine 460

miss rates (represented as AM) by considering all batches. 461

AM is initially set as the ratio of the number of unobserved 462

defective pieces processed by machine M (represented as FM) 463

to the number of defective pieces detected by machine M 464

(represented as BM), and it is expressed as (5) to (7). 465

The number of unobserved defective pieces FM is the sum 466

of all defective pieces produced by subsequent manufacturing 467

steps after a given machine during a manufacturing step, 468

regardless of the machine that is used. For example, according 469

to Table II, MCH54 detects two and one defective pieces 470

during the second and fifth manufacturing steps, respectively, 471

of the production of the 13th batch; therefore, total B54 = 472

2 + 1 = 3. However, MCH54 is assumed to have missed 473

3 + 1 defective pieces when it is used during the second 474

manufacturing step of the production of the 13th batch. 475

Furthermore, it misses five defective pieces when it is used in 476

the first manufacturing step of production of the 62nd batch. 477

Therefore, MCH54 has a total FM = (3 + 1) + (5) = 9. 478

Consequently, the miss rate of MCH54 is A54 = 9/(9 + 479

3) = 0.75 480

AM = FM

FM + BM
(5) 481

where 482

FM =
I∑

i=1

Ji−1∑

j=1

{∑Ji
k=j+1 bik, if (i, j) ∈ SProd(M)

0, otherwise
(6) 483

and 484

BM =
I∑

i=1

Ji−1∑

j=1

{
bij, if (i, j) ∈ SProd(M)

0, otherwise.
(7) 485

At the start of the E-Step of the second stage, the algorithm 486

calculates the expected number of defective pieces produced 487

by each suspect machine when inspection equipment from any 488

batch step detects defective pieces, per step (c) in Fig. 6. For 489

instance, according to Table II, when the fourth manufacturing 490

step (MCH68) detects three defective pieces, the first four 491

machines would each have their own probability of contribut- 492

ing to the defects, with their probability being influenced their 493

per-machine yields and miss rates. In addition, we calculated 494

the relative probability of each machine being the cause of 495

the defects (Fig. 5). To achieve this, the probability of the kth 496

manufacturing step causing the nth piece of the ith batch to 497

be defective is expressed as follows: 498

P(zink = 1|yin, θ) =
{

0, if yin = 0
FZink, if yin = 1

(8) 499

where 500

FZink =
(
(1 − Pik)

∏k−1
s=1 Pis

)((
1 − ai;Cin

)∏Ci;n−1
v=k aiv

)

∑Cin
t=1

((
(1 − Pit)

(∏t−1
u=1 Piu

))((
1 − ai;Cin

)∏Ci;n−1
w=k aiw

)) . 501

(9) 502
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Subsequently, the corresponding expected probability of the503

kth manufacturing step causing the nth piece of the ith batch504

to be defective is expressed as follows:505

E[zink] = 0 × P(zink = 0|yin, θ)506

+ 1 × P(zink = 1|yin, θ)507

= P(zink = 1|yin, θ). (10)508

To estimate the number of defective pieces caused by each509

machine, the result of the likelihood estimation performed510

using (10) must be multiplied by the number of defective511

pieces detected in that manufacturing step as follows:512

eijk = E[zink] × bij. (11)513

At this point, when defective pieces are detected during514

the jth manufacturing step for the ith batch, the number of515

defective pieces caused by the suspect kth manufacturing step516

should be mapped to machine M. Hence, the algorithm must517

define the set of (i, j, k) indexes of machine M as follows:518

SSus(M) = {(i, j, k)|∀mik = M}. (12)519

Each EM iteration improves the per-machine yield estima-520

tion, which is the percentage of good pieces relative to the521

total number of processed pieces, as calculated by applying522

(17). Thus, the total expected number of good pieces gM and523

defective pieces dM produced by each machine M should be524

estimated in advance, given an estimate of eijk.525

Per step (d) in Fig. 6 and on the basis of (12), the total526

expected number of defective pieces dM can be calculated as527

follows:528

dM =
∑

(i,j,k) ∈ SSus(M)

eijk. (13)529

Subsequently, the algorithm calculates the number of530

expected nondefective pieces produced during the kth man-531

ufacturing step hijk, which is followed by a subsequent532

manufacturing step that causes defects. These pieces are533

detected as defective pieces during the jth manufacturing step534

of the production of the ith batch, per step (e) in Fig. 6.535

Accordingly, hijk can be expressed as follows:536

hijk =
{

0, if j = k
hij;k+1 + eijk, if j > k

(14)537

Per step (f) in Fig. 6, the hijk of machine M can then be538

summed to obtain xM as follows:539

xM =
∑

(i,j,k) ∈ SSus(M)

hijk. (15)540

Subsequently, per step (g) in Fig. 6, the algorithm calcu-541

lates gM by summing xM and the total number of detected542

nondefective pieces processed by machine M as follows:543

gM = xM +
(

I∑

i=1

fiM · riM

)
. (16)544

In the M-step of the second stage, the algorithm, per steps545

(h) and (i) in Fig. 6, applies (17) to calculate the new estimated546

yield for machine M, that is, the percentage of good pieces547

relative to the total number of processed pieces produced 548

by machine M. In addition, the algorithm calculates the new 549

estimated per-machine miss rate by applying (18) and (19) 550

Pr′(M) = gM

gM + dM
(17) 551

A′
M = F′

M

F′
M + BM

(18) 552

where 553

F′
M =

I∑

i=1

Ji−1∑

j=1

{∑j
k=1 eijk, if (i, j) ∈ SProd(M)

0, otherwise.
(19) 554

In the third stage of the algorithm, it continues the calcu- 555

lation steps from (8) to (19) until one of the following stop 556

conditions is met: 557

1) Convergence Threshold: This condition is met if the 558

difference between the per-machine yield in the current 559

iteration and those in the previous iteration is less than 560

the threshold. This difference is calculated by obtaining 561

the relevant mean square error (MSE) [32] through the 562

proposed algorithm. 563

2) Maximum Number of Iterations: This condition is met 564

if the number of iterations reaches the predefined max- 565

imum number of iterations. 566

The findings of a study [2] suggest that a threshold dif- 567

ference of 0.001 and a maximum number of iterations of 568

approximately 60–100 are sufficient for the stop conditions. 569

Furthermore, additional iterations do not significantly improve 570

estimations. 571

IV. SIMULATION RESULTS AND DISCUSSIONS 572

Data on actual per-machine yield are difficult to obtain 573

from manufacturing sites because of feasibility-related limita- 574

tions [2]. Therefore, whether the estimated yield of a machine 575

is accurate cannot be determined. To verify the performance 576

of the proposed method, we conducted simulations on the 577

basis of a predefined per-machine yield to generate production 578

data pertaining to the simulated manufacturing process (see 579

Section IV-A). The proposed method was applied to estimate 580

per-machine yield and detect low-yield machines. Finally, we 581

used the simulated production data and the predefined per- 582

machine yield to evaluate the performance and limitations 583

of the proposed method in detecting low-yield machines in 584

a batch production system (see Sections IV-A and IV-C). 585

Furthermore, we described how the proposed method can 586

be applied at a manufacturing site and discussed the results 587

obtained by applying the proposed method to the data of a 588

real company (T-company) for a 1-week period in July 2018. 589

A. Simulation Process 590

To evaluate the performance and limitations of the proposed 591

method, we simulated several possible scenarios by applying 592

various configurations to build datasets for each simulation. 593

The following variables were used for each configuration. 594

a) Number of production machines (50, 250, or 595

500 machines). 596
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TABLE V
DISTRIBUTION PARAMETERS APPLIED IN EACH SIMULATION SCENARIO

b) Number of machines with inspection equipment (30%597

of production machines).598

c) Number of batches (10, 100, 200, 300, 400, 500, 1000,599

or 1500 batches for small datasets; 2000, 2500, 3000,600

or 3500 batches for medium datasets; and 4000, 4500,601

or 5000 batches for large datasets.602

d) Number of low-yield machines (1, 2, 3, 4, 5, 6, or603

7 machines).604

e) Yield of low-yield machines (0.4, 0.6, 0.8, 0.9, or 0.95).605

Notably, in our simulations, the variable number of606

machines with inspection equipment was fixed at 30% of607

production machines. This value was obtained from a real-608

world manufacturing site of T-company.609

The major steps for performing the simulations in this study610

are as follows.611

1) A value is selected for each simulation variable.612

2) Per-machine properties, including per-machine yield613

and whether an inspection equipment is installed, are614

predefined and act as ground truth data.615

3) Per-batch properties, including the number of batch616

steps, the number of raw pieces, the number of inspec-617

tion steps, and the names of the machines used in each618

batch step, are predefined.619

4) The data of defective pieces are generated to simulate620

real-world manufacturing conditions.621

5) The proposed method is applied to estimate per-machine622

yield on the basis that variables a), b), and c) are623

known and that variables d) and e) are the targets624

for estimation. Subsequently, the estimation and ground625

truth are compared to evaluate the performance of the626

proposed method.627

6) The simulation process is complete when all possi-628

ble scenarios are simulated. Notably, each simulation629

scenario is simulated 20 times to obtain the average630

performance values for 20 simulations.631

In each simulation, randomized values were applied for632

steps 3 and 4 on the basis of the distribution parameters listed633

in Table V. In Table V, parameters A, B, and C were derived634

from the real-world datasets of T-company, whereas parameter635

D was configured in accordance with the suggestions of other636

studies [30], [31].637

B. Simulation Results638

The main objective of the proposed method is to detect639

low-yield machines to facilitate maintenance planning; this is640

(a)

(b)

(c)

Fig. 7. Recall of the proposed method for manufacturer with (a) 50
production machines and 1000 production batches, (b) manufacturer with 250
production machines and 2000 production batches, and (c) manufacturer with
500 production machines and 3000 production batches.

achieved through per-machine yield estimation. Although the 641

average accuracy of per-machine yield estimation is high, the 642

use of accuracy as a performance indicator for the proposed 643

method provides no benefits. Only the machines with low 644

yield that require immediate maintenance must be identified. 645

Therefore, the evaluation of the proposed method was con- 646

ducted on the basis of the number of low-yield machines that 647

were correctly detected (true positive) and the number of low- 648

yield machines that were determined to be reliable machines 649

(false negative), which pertains to recall rate. Table VI and 650

Fig. 7 present the evaluation results of the simulation, with 651

the results stratified by variable configuration. In addition, 652

each value in Table VI and Fig. 7 represents the average of 653

20 simulations performed with the same setup. 654

The proposed method could detect low-yield machines 655

effectively when batch production data met specific criteria 656

(Table VI). For a manufacturer with 50 production machines 657

and at least 400 production batches, the proposed method 658

could detect a low-yield machine with a 100% recall. However, 659

it required at least 1000 production batches to detect up to five 660

low-yield machines with 100% recall. 661

For a moderately large manufacturer with 250 production 662

machines and at least 2000 production batches, the proposed 663

method could detect one to five low-yield machines with a 664

high recall of at least 95% (Table VI). For a large manufacturer 665
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TABLE VI
RECALL OF THE PROPOSED METHOD IN DETECTING ONE, THREE, AND

FIVE LOW-YIELD MACHINES (WITH LOW-YIELD VALUE OF 0.4)

TABLE VII
RESULTS OF A SIMULATION IN WHICH ALL LOW-YIELD MACHINES

WERE CORRECTLY IDENTIFIED

with 500 production machines and at least 3000 production666

batches, the proposed method could detect up to five low-yield667

machines with a 100% recall (Table VI).668

Fig. 7(a)–(c) plots the simulation results of ten scenarios669

in which a manufacturer has between 1 and 10 low-yield670

machines. The recall of each scenario is an average of671

20 simulations. The results reveal that the presence of more672

low-yield machines indicate lower recall values. For example,673

for a manufacturer with 250 production machines and 2000674

production batches, the recall of the proposed method was675

only approximately 87% when nine low-yield machines were676

present. That is, only one low-yield machine was not identi-677

fied. Furthermore, the results indicate that relative to detecting678

machines of yield 0.95, detecting machines of yield 0.4 leads679

to a slightly higher recall. (i.e., approximately 3% difference;680

Fig. 7).681

Table VII lists a set of simulation results obtained from one682

of the 20 simulations performed for a specific scenario, that683

is, the scenario in which a manufacturer had 250 production684

machines, 1000 production batches, and three low-yield pro-685

duction machines (i.e., MCH248, MCH249, and MCH250),686

each of which had a yield of 0.4. In a manufacturing687

simulation, each machine could be used several times to688

process multiple batches and multiple pieces. Subsequently, 689

each machine generated defective pieces that could only be 690

detected by inspection equipment. On the basis of these values, 691

the proposed method estimated the yield of each machine at 692

a 95% confidence level. Thereafter, three low-yield machines 693

were correctly identified; that is, the recall of this simulation 694

was 100%. 695

C. Discussions 696

On the basis of the simulation results reported in 697

Section IV-B, we identified the following two factors that 698

affected the performance of the proposed method in detecting 699

low-yield machines. 700

1) Number of Low-Yield Machines: The performance of the 701

proposed method was reduced when the number of low- 702

yield machines increased (Fig. 7). 703

2) Number of Production Batches: For a given number 704

of production machines, the proposed method required 705

a specific number of production batches to effectively 706

detect low-yield machines. 707

According to the results in Table VI, to effectively detect 708

up to five low-yield machines, manufacturers with 50–500 709

machines may require a dataset containing approximately 6– 710

20 times as many batches of data as there are production 711

machines. Although applying the minimum dataset require- 712

ments (e.g., 400 batches for a manufacturer with 50 machines) 713

can enable the proposed method to successfully identify 3 to 714

4 out of 5 low-yield machines, low-yield machines are usually 715

associated with considerably lower yield estimations (lower 716

and wider confidence intervals) relative to other production 717

machines in practice (see Tables VII and VIII). Engineers can 718

use larger datasets if they expect more low-yield machines. 719

We also discovered that the performance of the proposed 720

method in detecting low-yield machines is stable, regardless 721

of its yield. For example, the results indicate that relative 722

to detecting machines of yield 0.95, detecting machines with 723

yield 0.4 leads to a slightly higher recall. In the end, it did not 724

substantially affect the performance of the proposed method. 725

Before the proposed method can be applied at a manufac- 726

turing site, its limitations must be clarified. As highlighted 727

in the first assumption statement, numerous factors can affect 728

final production yield. Because the proposed method con- 729

siders production machines as the only cause of production 730

defects, failure to consider other manufacturing factors (e.g., 731

human operators, raw materials, product designs, methods, and 732

environment) may reduce its effectiveness. Nevertheless, the 733

proposed method should be adequately effective when it is 734

applied at a well-controlled manufacturing site. 735

The workflow for implementing the proposed method to 736

detect low-yield machines can be divided into three main steps. 737

First, a manufacturer must control manufacturing factors, such 738

as human operators, raw materials, product design, meth- 739

ods, and environment. Second, the manufacturer must collect 740

approximately 6–20 times as many batches of production data 741

as they have production machines. If this amount of data 742

is difficult to collect on a daily basis, it can be collected 743

on a weekly basis. This factor should be considered by a 744
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TABLE VIII
ANALYTICAL RESULTS OF 1-WEEK (THIRD WEEK OF JULY 2018)
MANUFACTURING DATASET COLLECTED FROM A PRODUCTION

LINE OF T-COMPANY

manufacturer when determining the effective frequency with745

which the proposed method is applied. Third, the manufacturer746

can apply the proposed method to estimate per-machine yield747

at a 95% confidence level and use a threshold to detect low-748

yield machines.749

In the third step of the proposed method, two configurable750

parameters are used, namely, the size of a resampled dataset751

and the number of resampled datasets. First, 30 resamples can752

be easily generated using a moderately powerful computer.753

Second, because the size of a resampled dataset should be754

maximized and should exhibit adequate variance, we can usu-755

ally use 80% of the records in the original dataset. However,756

a resampled dataset should ideally contain approximately757

6–20 times as many batches of data as there are production758

machines.759

Table VIII lists the analytical results of the proposed760

method; these results were obtained using the 1-week man-761

ufacturing datasets (specifically the third week of July 2018)762

of Taiwan-based Company T, which had 250 production763

machines and at least 1000 production batches. The results764

reveal that for that week, only MCH007 (an automatic dry765

film laminator) met the criteria for identification as a low-766

yield machine. According to the simulation results, the closer767

a low yield was to the yield of reliable machines, the more768

difficult distinguishing between them was. That is, whether769

the other machines were low-yield machines was difficult to770

determine. Subsequently, engineers can assess those machines771

for problems by applying a reasonable method, such as visual772

inspection, RCA, or PHM (if available).773

The major benefit of the proposed method is that it helps774

a manufacturer to detect problematic machines quickly. By775

taking propriate measures (e.g., immediate maintenance and776

quick finetuning), a manufacturer can reduce the number777

of defective pieces produced during their manufacturing778

process. Therefore, the proposed method can increase the time-779

efficiency and cost-efficiency of a production line.780

V. CONCLUSION781

We presented a new method for detecting low-yield782

machines in a batch production system. The proposed method783

uses resampling to generate numerous sets of batch produc- 784

tion data, performs per-machine yield estimation for each 785

dataset by applying a novel EM algorithm, and calculates 786

the confidence interval for each estimated per-machine yield 787

by applying the bootstrapping method. Under the proposed 788

method, one-sided hypothesis testing is then conducted to 789

generate a low-yield machine list on the basis of the confidence 790

intervals of the estimated per-machine yield. Subsequently, we 791

conducted simulations to understand the minimum require- 792

ments for the proposed method to successfully detect low-yield 793

machines. The simulation results indicate that the proposed 794

method can effectively detect at least one low-yield machine 795

after a specific amount of batch production data is collected. 796

Given that less production data may lead to less reliable 797

results, and as indicated in Table VI, manufacturers with 798

50–500 machines can effectively detect up to five low-yield 799

machines if they can collect a dataset that contains approxi- 800

mately 6–20 times as many batches as they have production 801

machines. Notably, engineers can check per-machine yield 802

estimations and decide whether a machine requires verification 803

(e.g., through visual inspection, RCA, or PHM if available) 804

and maintenance. 805

In some circumstances, a low-yield machine is not neces- 806

sarily a problem. Because of the nature of machines (e.g., an 807

automatic dry film laminator), achieving a 100% yield is an 808

impractical objective. Thus, if estimations based on historical 809

data indicate that the per-machine yield of a machine has 810

declined, engineers can use any feasible method (e.g., RCA 811

and PHM) to perform maintenance. Therefore, this study lays 812

the foundation for further investigations of per-machine yield, 813

such as those involving the use of multimodal data sources 814

and machine learning [21], [22]. These studies can help to 815

improve the performance of the proposed method in detecting 816

low-yield machines to obtain maintenance recommendations. 817
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