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Detecting Low-Yield Machines in Batch Production
Systems Based on Observed Defective Pieces
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Wei-Jen Wang , Member, IEEE, and Deron Liang

Abstract—In batch production systems, detecting low-yield
machines is essential for minimizing the production of defective
pieces, which is a complex problem that currently requires
multiple experts, considerable capital, or a combination of both
to overcome. To solve this problem, we proposed a cost-efficient
and straightforward method that involves using maximum like-
lihood estimation and bootstrap confidence intervals to estimate
per-machine yield; this method enables identification of low-
yield machines and generation of a list of these machines.
Manufacturing engineers can use the list to perform necessary
verification and maintenance processes. Before implementing this
method, a manufacturer with 50–500 machines should build a
dataset containing approximately 6–20 times as many batches
as there are production machines. When this condition is met,
the proposed method can be used effectively to detect up to five
low-yield machines.

Index Terms—Batch production, expectation–maximization
(EM) algorithm, machine maintenance suggestion, per-machine
yield estimation.

I. INTRODUCTION

IN THE manufacturing industry, the demand for highly
customized products is increasing [1]. To meet this demand,

a manufacturer can use a batch production system, which
involves numerous production machines, various production
flows, and the production of numerous batches of products [2].
Because a production process is often complex, numerous
types of defects may occur because of various causes [3].
In this context, a low-yield machine is a key indication
that a high number of defective products may be generated
for various reasons, including poor machine conditions and
misconfiguration [4]. This is a challenge for manufacturers that
are striving to achieve zero-defect manufacturing (ZDM) [5],
especially those that are using batch production systems.
Although the practical implementation of ZDM is challenging,
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manufacturers tend to be willing to take any reasonable
measures to achieve or work toward ZDM [6]. Accordingly,
detecting and maintaining low-yield machines are crucial to
achieving ZDM. Numerous studies have proposed product-
oriented or process-oriented diagnosis methods for doing so
(Table I) [6]. In product-oriented diagnosis, defective products
are investigated to detect service machines that generate prod-
uct defects. In process-oriented diagnosis, a machine health
monitoring system is implemented for every machine to detect
problematic machines and facilitate maintenance scheduling.

In practice, process-oriented and product-oriented diagnoses
can be combined to complement each other. A manufacturer
may implement product-oriented diagnosis methods such as
root cause analysis (RCA) [7], [8], [9], [10], [11], [12]. The
flow of RCA-based methods can be conceptually divided into
three major steps. First, a manufacturer must perform product
defect detection and collect analytical data on defects. Second,
expert engineers must analyze the defect data to identify the
root cause. Third, these engineers service or adjust the man-
ufacturer’s production machines on the basis of the analysis
results. Generally, RCA-based methods consider numerous
parameters [8], [11]. Machine learning can be applied to
build automated models for conducting RCA, but this type
of analysis is currently still labor intensive for experts, as
shown in Table I. Moreover, in a batch production system, the
dependency on expert knowledge is high, and the training data
provided for machine learning may be insufficient [8].

Alternatively, a manufacturer may apply process-oriented
methods, which involve the use of machine-condition-
monitoring sensors and a prognostics and health management
(PHM) system [13], [14], [15], [16], [17], [18], [19], [20].
Conceptually, the flow of PHM-based methods can be divided
into three major steps. First, data collection is performed; to
achieve this, a manufacturer usually deploys numerous mon-
itoring sensors and controllers for each production machine.
Second, because numerous parameters are used in sensor data,
a machine learning or deep learning model is usually used
to extract data features. Third, engineers must be notified
when a fault is identified through a PHM-based method.
These engineers then verify the health conditions of the
identified machines and plan a suitable maintenance schedule.
PHM-based methods are widely used in the manufacturing
industry, but several challenges must be addressed, including
false alarms and machine misconfigurations [4], [13], [17]. In
addition, this method incurs a high initial cost and is only
affordable for large manufacturers (Table I) [14].
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TABLE I
COMPARISON OF METHODS FOR DETECTING LOW-YIELD MACHINES

Although existing machine diagnosis methods (e.g., RCA
and PHM) can be used to detect machines with low yields
and identify their failures, these methods are generally either
labor intensive (because of the involvement of human experts)
or costly to implement (Table I). Consequently, small- and
medium-sized manufacturers are likely to encounter chal-
lenges in implementing these methods. To address these
limitations, we proposed an alternative method for detecting
low-yield machines. The proposed method uses historical per-
batch production data and maximum likelihood estimation
(MLE) to estimate per-machine yield. MLE can be performed
by applying the expectation–maximization (EM) algorithm.
Subsequently, the results of the per-machine yield estimation
can be used to identify low-yield machines. Fig. 1 illustrates
how the proposed method can be used to quickly identify and
quantify the number of low-yield machines on the basis of
production data; this process can be performed without the
involvement of human experts. In addition to using the results
of the proposed method, engineers can leverage multimodal
data sources (e.g., PHM and RCA) and machine learning to
develop a decision support system that can obtain detailed
information regarding failures or problems related to the
identified low-yield machines [21], [22].

This proposed method can be categorized as a product-
oriented method, and it is based on a study that performed
per-machine yield estimations to predict per-batch yield for
the next 1–4 weeks [2]. Although the method used in that
study allows for machine yield to be estimated, the obtained
estimation results are insufficiently reliable because of two
limitations. First, it does not consider the frequency with which
a machine is used. Second, it tends to identify the machines
used in earlier batch production steps as having a greater
probability of being low-yield machines relative to those used
in later production steps.

To overcome these limitations, we proposed a method that
employs an improved EM-based algorithm [2]; this algorithm
incorporates per-machine miss rate as a variable to estimate
the tolerance of each inspection equipment. We also included
an additional step, that is, obtaining the confidence intervals of

Fig. 1. Illustration of the proposed method relative to recent studies.

per-machine yield estimations and then performing hypothesis
testing to narrow down the number of low-yield machine
candidates. By considering the dynamic accuracy of inspection
devices and large production batches, we further analyzed
the number of observed defective pieces, enabling the iden-
tification of low-yield machines that may require immediate
maintenance.

Furthermore, we performed simulation experiments to val-
idate the function of the proposed method. Because actual
per-machine yield data are unavailable, we conducted simu-
lations to generate per-machine yield and batch production
data. In addition, we designed our simulation to explore the
minimum dataset size required for the proposed method to
successfully detect low-yield machines. Subsequently, under
the proposed method, production data is used as an input
to estimate per-machine yield. On the basis of our simu-
lation experiment results, the proposed method was applied
to effectively detect low-yield machines when a given con-
dition was met. To effectively detect up to five low-yield
machines, manufacturers with 50–500 machines must collect
approximately 6–20 times as many batches of production
data as there are production machines. However, using fewer
batches of production data may lead to less reliable results
(see Section IV for a detailed explanation). In practice, a large
manufacturer should be able to obtain this amount of data
within a day and to apply the proposed method for analyses
on a daily basis. For small manufacturers, the feasible time
frame for completing these tasks is approximately one week.

The contributions of this study are as follows.
1) The proposed method is straightforward (only uses the

common production data with a few parameters) and
cost efficient (does not require experts or investment to
obtain additional sensors or hardware) compared with
other RCA and PHM methods.

2) The proposed method employs MLE and bootstrap con-
fidence intervals to estimate per-machine yield, which
can then be used to detect low-yield machines for
the purpose of facilitating maintenance scheduling. The
method was validated using simulation datasets in our
experiments.
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The proposed method can be used to improve production
management. First, it can be used to enhance maintenance
planning because it can quickly identify low-yield machines,
thereby reducing the time required to identify the root causes
of manufacturing problems. In addition, it can help manufac-
turers minimize the occurrence of defects and work toward
achieving zero defects in future production. Second, because
the proposed method requires only a few parameters derived
from production data and does not involve human experts,
it is more cost-effective than other recently developed RCA
methods are. Thus, a manufacturer with limited resources
can easily adopt this method. Furthermore, if a larger budget
becomes available, they can combine the proposed method
with RCA and PHM to obtain more detailed results.

The remainder of this article is organized as follows.
Sections II and III describe the proposed method for generating
a list of low-yield machines that may require immediate main-
tenance. Section IV discusses the simulation design and results
and the practical considerations for the proposed methods. The
final section concludes the study.

II. PROPOSED METHOD

The two major functions of the proposed method are
described in Figs. 2 and 4, respectively. In the first function,
per-machine yield estimation is performed in accordance with
steps (1)–(6) of Fig. 2, and the mathematical formulation of
step (4) is explained in Section III. Because each production
machine is most likely used differently during a batch produc-
tion process, estimated per-machine yield obtained from small
samples is less reliable than that obtained from large samples.
To address this challenge, for the first function, we combined
resampling with the bootstrapping method [23] to calculate
each per-machine yield with a confidence interval, and we
excluded the machines with a high yield or high standard
deviation to obtain a final sorted list of low-yield machines in
the second function, which operates in accordance with steps
(1)–(9) of Fig. 4.

A. Overview of Per-Machine Yield Estimation

To perform per-machine yield estimation (Fig. 2), the batch
production dataset must be preprocessed and reformatted
(Table II). Data preprocessing comprises three major tasks
(step 1 in Fig. 2). First, the data related to manual or human
labor are excluded because the objective is to detect low-yield
machines. Second, when no data pertaining to the observed
defective pieces in a machine are collected because of the
absence of inspection equipment, the parameters for these
pieces are set to zero for the machine. Third, the multiple
consecutive batch steps that are applied to the machine are
merged into one batch step (including the number of observed
defective pieces).

According to a study [2], machine yield estimations are
highly influenced by the number of observed defective pieces
and the number of batches for which a machine is used. When
the EM algorithm is used to analyze a dataset, a single set of
per-machine yield data may be produced; among these per-
machine yield data, some may be more reliable than others

Fig. 2. Proposed method for estimating per-machine-yield.

TABLE II
EXAMPLE OF REQUIRED PRODUCTION DATA

because the EM algorithm provides a more accurate estimation
for the machines processing a larger number of batches than
for those processing a smaller number of batches. To examine
the reliability of per-machine yield estimations, more samples
must be used to obtain the confidence interval for each
estimated per-machine yield. To this end, we resampled a batch
production dataset to randomly select 80% of the records in the
dataset (i.e., step 3 in Fig. 2). With this technique, the required
number of subdatasets can be generated. We set the number
of subdatasets to 30 (i.e., step 2 in Fig. 2). Subsequently, we
applied the EM algorithm to the resampled subdatasets and
obtained 30 datasets of per-machine yield (i.e., steps 4 and 5
in Fig. 2). Finally, we applied the bootstrapping method [23]
to estimate the approximate confidence intervals of the per-
machine yield (i.e., step 6 in Fig. 2). The bootstrapping
method is a promising method for constructing confidence
intervals. This is supported by a study [23] that demonstrated
its usefulness in estimating confidence intervals for quantifying
uncertainty regarding the locations of multiple change points.

Two major parameters are used in the first function, the size
of a resampled dataset and the number of resampled datasets.
Several studies have demonstrated that for the bootstrapping
method, a sample size of ≥30 is usually sufficient [24], [25],
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Fig. 3. Threshold and bootstrap confidence intervals of per-machine yield
estimation as obtained through one-sided hypothesis testing.

[26]. Therefore, we collected a minimum of 30 samples for
each estimated per-machine yield because each run of the
EM algorithm requires considerable processing time. For the
resampling of the original dataset, we performed random sam-
pling to select 80% of the records in the dataset. Two factors
must be considered for this parameter. First, an objective is
to create as many variations as possible for each resampled
dataset; thus, resampled datasets must be differentiated from
each other to the greatest extent. Second, the EM algorithm
requires a large dataset to estimate per-machine yield [2]; thus,
the size of a resampled dataset should be maximized. On the
basis of our experience, we used 80% of a dataset to ensure
the quality of EM estimations while maintaining a favorable
variation for the 30 resampled datasets. Notably, the 80% value
is configurable and may be reduced when a larger dataset is
used as the basis for obtaining resampled datasets. This topic
is further discussed in Section IV-C.

B. Obtaining Low-Yield Machine List

The second function of the proposed method is to generate
a low-yield machine candidate list by performing one-sided
hypothesis testing. The one-sided hypothesis test (or one-
tailed test) is a test of statistical significance that is performed
to determine whether a given sample is significantly greater
or less than a given threshold value. For each machine, the
bootstrap method in the first function should provide the boot-
strap confidence interval of its yield estimation. However, we
limited the number of low-yield machine candidates because
a manufacturer may have hundreds of machines; we averaged
all per-machine yield estimates and used the resulting global
average as a threshold value. This predefined threshold was
then used to distinguish between low- and high-yield machines
through a one-sided hypothesis test.

Therefore, for a per-machine yield estimation obtained
through bootstrapping, a low-yield machine is identified when
the two following conditions are met.

1) The machine yield estimate is less than the predefined
yield threshold.

2) The threshold position is within the critical area of the
machine yield estimation (p < 0.05).

On the basis of these two conditions, we determined whether
a particular machine yield was significantly less than the
average.

A yield threshold can be defined using the global average of
all per-machine yields (Fig. 3). Subsequently, to obtain a low-
yield machine candidate list, the machines with estimated yield

Fig. 4. Proposed method for obtaining a low-yield machine candidate list.

that are significantly less than the threshold must be identified.
That is, in the one-sided hypothesis test, the p-value of the
threshold must be calculated using the per-machine bootstrap
confidence interval. In Fig. 3, the p-value of the threshold is
<0.05 for MCH1 and MCH2 but >0.05 for MCH3. Therefore,
MCH3 is excluded from the low-yield machine candidate list;
MCH4 is also excluded because its yield is greater than the
threshold.

Before performing the second function, a manufacturer
must predefine the maximum number of low-yield machine
candidates (e.g., 10). Fig. 4 illustrates the steps for performing
a one-sided hypothesis test until a low-yield machine candidate
list is obtained. The p-value of the yield threshold relative to
the yield bootstrap interval of the corresponding machine is
also estimated (i.e., step 4 in Fig. 4). At this point, the yield
threshold has an independent p-value for each machine. It is
then used to determine whether a given machine is retained
or removed as a low-yield machine candidate (i.e., step 5 in
Fig. 4). Finally, after the final low-yield machine candidate list
is obtained, it is provided to maintenance engineers.

III. ESTIMATION OF PER-MACHINE YIELD

This section explains how the proposed method estimates
per-machine yield (i.e., step 4 in Fig. 2). First, the reasonable
assumptions applied for the proposed method are introduced.
Second, the concept of inspection equipment miss rate is
explained. Finally, mathematical notations are used to describe
the proposed method for estimating per-machine yield.

A. Assumptions Applied for Proposed Method

The objective of the proposed method is to obtain a low-
yield machine list that can be used as maintenance reference.
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Fig. 5. Implementation of inspections and detection of defective pieces during batch production.

Because numerous factors can affect production yield and
defect observability, several reasonable assumptions must be
made to develop a specific model for batch production
systems. The assumptions are as follows.

1) Dominant Factor for Production Yield: We assumed that
defective pieces are caused by production machines.
In practice, a defective product may be affected by
numerous factors, including human operators, types of
machines used, quality of raw materials, complexity
of product designs, and manufacturing methods and
environments [3], [27].

2) Defect Observability: We assumed that when a machine
with inspection equipment detects defective pieces, the
defects could have been caused by any of the machines
used before this inspection step is performed. This
is because inspections can only be conducted during
specific manufacturing steps.

3) Removal of Defective Pieces: On the basis of the
first-pass yield [28], the yield of a batch is deter-
mined to be equal to the product of the machine
yield of all involved machines (assuming that defective
pieces are not reworked or corrected). We assumed that
when defects are detected by inspection equipment, the
defective pieces are promptly removed. Only nonde-
fective pieces (including unobserved defective pieces)
are processed in the next step. Usually, a manufacturer
may commit additional human resources to determine
whether defective pieces can be reworked [29]. However,
we did not consider this step in our proposed method
because of the first assumption, that is, that only
machine-related factors are considered.

B. Inspection Equipment Miss Rate

In a batch production system, a batch of products may
be inspected several times during a manufacturing process
(Fig. 5). The observed results of an inspection process reveal
the number of defective pieces produced during a specific
inspection step, and this information is crucial for esti-
mating per-machine yield. In practice, inspections are only
performed during specific steps. Therefore, identifying the
specific machine responsible for each defect of each produced
piece is infeasible. This problem was addressed in a study [2];
specifically, when a defective piece was detected by an
inspection machine during a given manufacturing step, all
the machines involved in the preceding manufacturing steps
and the current one become suspects. The method applied in
that study [2] allows for per-machine yield to be estimated;

however, a problem with this method is that the machines
involved in earlier batch steps tend to have lower estimated
per-machine yield relative to the machines involved in later
batch steps.

To address this problem, we improved the method by con-
sidering the accuracy of inspection equipment. Several studies
have demonstrated that the accuracy of inspection equipment
has a tolerance of approximately 10%–30% [30], [31]. This
finding indicates that some defective pieces may be unde-
tected during an inspection step and transferred to subsequent
batch steps. Manufacturing steps can be divided into multiple
sequences of steps on the basis of inspection steps. For
example, in Fig. 5, if defective pieces are detected during
an inspection step that occurs within a given sequence, all
the machines involved in that sequence are more likely to be
the cause of the defects relative to the machines involved in
preceding sequences.

In Fig. 5, seven manufacturing steps involving five machines
are presented, all inspection steps are assumed to have a
10% tolerance, and defective pieces are assumed to have been
detected in the final machine (rightmost machine, M5). In this
scenario, all the machines involved in the sequence in which
the defects were detected (i.e., the sixth [M7] and seventh
[M5] machines) have an overall 90% probability of being the
cause of the defects. Conversely, the machines involved in the
first to fifth steps only have an overall 10% probability of
being the cause of the defects; specifically, those involved in
the first and second steps (M4 and M5) only have an overall
1% probability of being the cause of the defects (10% of 10%
probability).

C. Complete Equations of EM Algorithm

The notations used in this study are defined in Tables III
and IV. Specifically, Table III contains all the notations rep-
resenting known values that can be extracted from real-world
data, and Table IV contains all the notations representing the
variables that are initially unknown and must be subsequently
estimated.

In this study, per-machine yield was estimated on the basis
of the principle of likelihood. That is, if several batches contain
newly produced defective pieces after a specific machine is
used, the estimated yield of that machine should be low.
Therefore, we developed a likelihood function for each man-
ufacturing step to estimate per-machine yield, which can be
expressed as (1) and (2). For the per-machine yield θ , several
zink values may affect yin. If yin is detected as a defective piece
(yin = 1), one of the corresponding zink values should be 1.
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TABLE III
LIST OF NOTATIONS WITH PREVIOUSLY KNOWN VALUES

In contrast, all corresponding zink values should be 0, if yin is
detected as a nondefective piece (yin = 0). Let Y be the set
of yin and Z be the set of zink for each manufacturing step.
When all batches are considered, the likelihood function of Y
and Z given per-machine yield θ can be defined as P(Y, Z|θ).
P(Y, Z|θ) can be calculated by considering the condition of
each piece in each batch that undergoes a manufacturing
process, and the equation applied is as follows:

P(Y, Z|θ) =
I∏

i=1

Ni∏

n=1

⎛

⎜⎝(FDin)
yin ×

⎛

⎝
Cin∏

k=1

Pik

⎞

⎠
1−yin

⎞

⎟⎠ (1)

where

FDin =
Cin∏

k=1

⎛

⎝
(

(1 − Pik)

k−1∏

s=1

Pis

)⎛

⎝(1 − ai;Cin

) Ci;n−1∏

v=k

aiv

⎞

⎠

⎞

⎠
zink

. (2)

If no defective pieces are present (all yin = 0), the likelihood
of all per-machine yield θ would be 1. Otherwise, when
yin = 1, the corresponding zink can be calculated by using
FDin by applying (2), which can be used to calculate the
likelihood of a defect occurring on the basis of the yield of the
corresponding production machines (i.e., production steps).

TABLE IV
LIST OF NOTATIONS WITH UNKNOWN INITIAL VALUES

Furthermore, as explained in Section III-B and illustrated
in Fig. 5, when a defective piece is detected during a given
inspection step, the production steps occurring between that
inspection step and the previous inspection step exhibit a
considerably greater likelihood of causing the defect relative to
the other production steps. Therefore, we must determine the
likelihood value of each corresponding production machine by
considering the miss rate of each machine (represented by aiv).
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Fig. 6. Activity diagram demonstrating application of an EM-based algorithm
of the proposed method to estimate per-machine yield.

To estimate per-machine yield per step (4) (Fig. 2), we
developed a novel EM algorithm that comprises three main
stages (Fig. 6). First, the algorithm calculates the initial values
of various parameters, including per-machine yield Pr(M) and
per-machine miss rates AM , which are calculated per steps
(a) and (b), respectively, in Fig. 6. Second, it performs an
estimation (E-step) and updates parameter values (M-Step)
per steps (c)–(i) in Fig. 6. Third, it iteratively improves the
estimation until the stop condition is met and finally outputs
the optimal estimation for per-machine yield.

During the initialization stage, the proposed algorithm maps
each batch step to a production machine. That is, the jth
manufacturing step of the ith batch should be mapped to a
given machine M. Therefore, the manufacturing steps for a
batch that uses machine M can be defined using the following
function:

SProd(M) = {(i, j)|∀mij = M}. (3)

For example, per Table II, SProd(54) = {(13, 2),

(13, 5), (62, 1)}, indicating that MCH54 was used in the
second and fifth manufacturing steps of the 13th batch and the
first manufacturing step of the 62nd batch.

Subsequently, the initial per-machine yield and initial per-
machine miss rates should be calculated per steps (a) and
(b) (Fig. 6). Instead of applying the random guess method,
the algorithm calculates initial per-machine yield using the
following formula:

argmin
θ

I∑

i=1

( Ji∑

k=1

qik − ln li

)2

(4)

where qik ≤ 0. Therefore, the yield of machine M, Pr(M),
can be obtained by calculating the natural exponent of each
element in θ .

The algorithm must also calculate the initial per-machine
miss rates (represented as AM) by considering all batches.
AM is initially set as the ratio of the number of unobserved
defective pieces processed by machine M (represented as FM)

to the number of defective pieces detected by machine M
(represented as BM), and it is expressed as (5) to (7).

The number of unobserved defective pieces FM is the sum
of all defective pieces produced by subsequent manufacturing
steps after a given machine during a manufacturing step,
regardless of the machine that is used. For example, according
to Table II, MCH54 detects two and one defective pieces
during the second and fifth manufacturing steps, respectively,
of the production of the 13th batch; therefore, total B54 =
2 + 1 = 3. However, MCH54 is assumed to have missed
3 + 1 defective pieces when it is used during the second
manufacturing step of the production of the 13th batch.
Furthermore, it misses five defective pieces when it is used in
the first manufacturing step of production of the 62nd batch.
Therefore, MCH54 has a total FM = (3 + 1) + (5) = 9.
Consequently, the miss rate of MCH54 is A54 = 9/(9 +
3) = 0.75

AM = FM

FM + BM
(5)

where

FM =
I∑

i=1

Ji−1∑

j=1

{∑Ji
k=j+1 bik, if (i, j) ∈ SProd(M)

0, otherwise
(6)

and

BM =
I∑

i=1

Ji−1∑

j=1

{
bij, if (i, j) ∈ SProd(M)

0, otherwise.
(7)

At the start of the E-Step of the second stage, the algorithm
calculates the expected number of defective pieces produced
by each suspect machine when inspection equipment from any
batch step detects defective pieces, per step (c) in Fig. 6. For
instance, according to Table II, when the fourth manufacturing
step (MCH68) detects three defective pieces, the first four
machines would each have their own probability of contribut-
ing to the defects, with their probability being influenced their
per-machine yields and miss rates. In addition, we calculated
the relative probability of each machine being the cause of
the defects (Fig. 5). To achieve this, the probability of the kth
manufacturing step causing the nth piece of the ith batch to
be defective is expressed as follows:

P(zink = 1|yin, θ) =
{

0, if yin = 0
FZink, if yin = 1

(8)

where

FZink =
(
(1 − Pik)

∏k−1
s=1 Pis

)((
1 − ai;Cin

)∏Ci;n−1
v=k aiv

)

∑Cin
t=1

((
(1 − Pit)

(∏t−1
u=1 Piu

))((
1 − ai;Cin

)∏Ci;n−1
w=k aiw

)) .

(9)
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Subsequently, the corresponding expected probability of the
kth manufacturing step causing the nth piece of the ith batch
to be defective is expressed as follows:

E[zink] = 0 × P(zink = 0|yin, θ)

+ 1 × P(zink = 1|yin, θ)

= P(zink = 1|yin, θ). (10)

To estimate the number of defective pieces caused by each
machine, the result of the likelihood estimation performed
using (10) must be multiplied by the number of defective
pieces detected in that manufacturing step as follows:

eijk = E[zink] × bij. (11)

At this point, when defective pieces are detected during
the jth manufacturing step for the ith batch, the number of
defective pieces caused by the suspect kth manufacturing step
should be mapped to machine M. Hence, the algorithm must
define the set of (i, j, k) indexes of machine M as follows:

SSus(M) = {(i, j, k)|∀mik = M}. (12)

Each EM iteration improves the per-machine yield estima-
tion, which is the percentage of good pieces relative to the
total number of processed pieces, as calculated by applying
(17). Thus, the total expected number of good pieces gM and
defective pieces dM produced by each machine M should be
estimated in advance, given an estimate of eijk.

Per step (d) in Fig. 6 and on the basis of (12), the total
expected number of defective pieces dM can be calculated as
follows:

dM =
∑

(i,j,k) ∈ SSus(M)

eijk. (13)

Subsequently, the algorithm calculates the number of
expected nondefective pieces produced during the kth man-
ufacturing step hijk, which is followed by a subsequent
manufacturing step that causes defects. These pieces are
detected as defective pieces during the jth manufacturing step
of the production of the ith batch, per step (e) in Fig. 6.
Accordingly, hijk can be expressed as follows:

hijk =
{

0, if j = k
hij;k+1 + eijk, if j > k

(14)

Per step (f) in Fig. 6, the hijk of machine M can then be
summed to obtain xM as follows:

xM =
∑

(i,j,k) ∈ SSus(M)

hijk. (15)

Subsequently, per step (g) in Fig. 6, the algorithm calcu-
lates gM by summing xM and the total number of detected
nondefective pieces processed by machine M as follows:

gM = xM +
(

I∑

i=1

fiM · riM

)
. (16)

In the M-step of the second stage, the algorithm, per steps
(h) and (i) in Fig. 6, applies (17) to calculate the new estimated
yield for machine M, that is, the percentage of good pieces

relative to the total number of processed pieces produced
by machine M. In addition, the algorithm calculates the new
estimated per-machine miss rate by applying (18) and (19)

Pr′(M) = gM

gM + dM
(17)

A′
M = F′

M

F′
M + BM

(18)

where

F′
M =

I∑

i=1

Ji−1∑

j=1

{∑j
k=1 eijk, if (i, j) ∈ SProd(M)

0, otherwise.
(19)

In the third stage of the algorithm, it continues the calcu-
lation steps from (8) to (19) until one of the following stop
conditions is met:

1) Convergence Threshold: This condition is met if the
difference between the per-machine yield in the current
iteration and those in the previous iteration is less than
the threshold. This difference is calculated by obtaining
the relevant mean square error (MSE) [32] through the
proposed algorithm.

2) Maximum Number of Iterations: This condition is met
if the number of iterations reaches the predefined max-
imum number of iterations.

The findings of a study [2] suggest that a threshold dif-
ference of 0.001 and a maximum number of iterations of
approximately 60–100 are sufficient for the stop conditions.
Furthermore, additional iterations do not significantly improve
estimations.

IV. SIMULATION RESULTS AND DISCUSSIONS

Data on actual per-machine yield are difficult to obtain
from manufacturing sites because of feasibility-related limita-
tions [2]. Therefore, whether the estimated yield of a machine
is accurate cannot be determined. To verify the performance
of the proposed method, we conducted simulations on the
basis of a predefined per-machine yield to generate production
data pertaining to the simulated manufacturing process (see
Section IV-A). The proposed method was applied to estimate
per-machine yield and detect low-yield machines. Finally, we
used the simulated production data and the predefined per-
machine yield to evaluate the performance and limitations
of the proposed method in detecting low-yield machines in
a batch production system (see Sections IV-A and IV-C).
Furthermore, we described how the proposed method can
be applied at a manufacturing site and discussed the results
obtained by applying the proposed method to the data of a
real company (T-company) for a 1-week period in July 2018.

A. Simulation Process

To evaluate the performance and limitations of the proposed
method, we simulated several possible scenarios by applying
various configurations to build datasets for each simulation.
The following variables were used for each configuration.

a) Number of production machines (50, 250, or
500 machines).
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TABLE V
DISTRIBUTION PARAMETERS APPLIED IN EACH SIMULATION SCENARIO

b) Number of machines with inspection equipment (30%
of production machines).

c) Number of batches (10, 100, 200, 300, 400, 500, 1000,
or 1500 batches for small datasets; 2000, 2500, 3000,
or 3500 batches for medium datasets; and 4000, 4500,
or 5000 batches for large datasets.

d) Number of low-yield machines (1, 2, 3, 4, 5, 6, or
7 machines).

e) Yield of low-yield machines (0.4, 0.6, 0.8, 0.9, or 0.95).
Notably, in our simulations, the variable number of

machines with inspection equipment was fixed at 30% of
production machines. This value was obtained from a real-
world manufacturing site of T-company.

The major steps for performing the simulations in this study
are as follows.

1) A value is selected for each simulation variable.
2) Per-machine properties, including per-machine yield

and whether an inspection equipment is installed, are
predefined and act as ground truth data.

3) Per-batch properties, including the number of batch
steps, the number of raw pieces, the number of inspec-
tion steps, and the names of the machines used in each
batch step, are predefined.

4) The data of defective pieces are generated to simulate
real-world manufacturing conditions.

5) The proposed method is applied to estimate per-machine
yield on the basis that variables a), b), and c) are
known and that variables d) and e) are the targets
for estimation. Subsequently, the estimation and ground
truth are compared to evaluate the performance of the
proposed method.

6) The simulation process is complete when all possi-
ble scenarios are simulated. Notably, each simulation
scenario is simulated 20 times to obtain the average
performance values for 20 simulations.

In each simulation, randomized values were applied for
steps 3 and 4 on the basis of the distribution parameters listed
in Table V. In Table V, parameters A, B, and C were derived
from the real-world datasets of T-company, whereas parameter
D was configured in accordance with the suggestions of other
studies [30], [31].

B. Simulation Results

The main objective of the proposed method is to detect
low-yield machines to facilitate maintenance planning; this is

(a)

(b)

(c)

Fig. 7. Recall of the proposed method for manufacturer with (a) 50
production machines and 1000 production batches, (b) manufacturer with 250
production machines and 2000 production batches, and (c) manufacturer with
500 production machines and 3000 production batches.

achieved through per-machine yield estimation. Although the
average accuracy of per-machine yield estimation is high, the
use of accuracy as a performance indicator for the proposed
method provides no benefits. Only the machines with low
yield that require immediate maintenance must be identified.
Therefore, the evaluation of the proposed method was con-
ducted on the basis of the number of low-yield machines that
were correctly detected (true positive) and the number of low-
yield machines that were determined to be reliable machines
(false negative), which pertains to recall rate. Table VI and
Fig. 7 present the evaluation results of the simulation, with
the results stratified by variable configuration. In addition,
each value in Table VI and Fig. 7 represents the average of
20 simulations performed with the same setup.

The proposed method could detect low-yield machines
effectively when batch production data met specific criteria
(Table VI). For a manufacturer with 50 production machines
and at least 400 production batches, the proposed method
could detect a low-yield machine with a 100% recall. However,
it required at least 1000 production batches to detect up to five
low-yield machines with 100% recall.

For a moderately large manufacturer with 250 production
machines and at least 2000 production batches, the proposed
method could detect one to five low-yield machines with a
high recall of at least 95% (Table VI). For a large manufacturer
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TABLE VI
RECALL OF THE PROPOSED METHOD IN DETECTING ONE, THREE, AND

FIVE LOW-YIELD MACHINES (WITH LOW-YIELD VALUE OF 0.4)

TABLE VII
RESULTS OF A SIMULATION IN WHICH ALL LOW-YIELD MACHINES

WERE CORRECTLY IDENTIFIED

with 500 production machines and at least 3000 production
batches, the proposed method could detect up to five low-yield
machines with a 100% recall (Table VI).

Fig. 7(a)–(c) plots the simulation results of ten scenarios
in which a manufacturer has between 1 and 10 low-yield
machines. The recall of each scenario is an average of
20 simulations. The results reveal that the presence of more
low-yield machines indicate lower recall values. For example,
for a manufacturer with 250 production machines and 2000
production batches, the recall of the proposed method was
only approximately 87% when nine low-yield machines were
present. That is, only one low-yield machine was not identi-
fied. Furthermore, the results indicate that relative to detecting
machines of yield 0.95, detecting machines of yield 0.4 leads
to a slightly higher recall. (i.e., approximately 3% difference;
Fig. 7).

Table VII lists a set of simulation results obtained from one
of the 20 simulations performed for a specific scenario, that
is, the scenario in which a manufacturer had 250 production
machines, 1000 production batches, and three low-yield pro-
duction machines (i.e., MCH248, MCH249, and MCH250),
each of which had a yield of 0.4. In a manufacturing
simulation, each machine could be used several times to

process multiple batches and multiple pieces. Subsequently,
each machine generated defective pieces that could only be
detected by inspection equipment. On the basis of these values,
the proposed method estimated the yield of each machine at
a 95% confidence level. Thereafter, three low-yield machines
were correctly identified; that is, the recall of this simulation
was 100%.

C. Discussions

On the basis of the simulation results reported in
Section IV-B, we identified the following two factors that
affected the performance of the proposed method in detecting
low-yield machines.

1) Number of Low-Yield Machines: The performance of the
proposed method was reduced when the number of low-
yield machines increased (Fig. 7).

2) Number of Production Batches: For a given number
of production machines, the proposed method required
a specific number of production batches to effectively
detect low-yield machines.

According to the results in Table VI, to effectively detect
up to five low-yield machines, manufacturers with 50–500
machines may require a dataset containing approximately 6–
20 times as many batches of data as there are production
machines. Although applying the minimum dataset require-
ments (e.g., 400 batches for a manufacturer with 50 machines)
can enable the proposed method to successfully identify 3 to
4 out of 5 low-yield machines, low-yield machines are usually
associated with considerably lower yield estimations (lower
and wider confidence intervals) relative to other production
machines in practice (see Tables VII and VIII). Engineers can
use larger datasets if they expect more low-yield machines.

We also discovered that the performance of the proposed
method in detecting low-yield machines is stable, regardless
of its yield. For example, the results indicate that relative
to detecting machines of yield 0.95, detecting machines with
yield 0.4 leads to a slightly higher recall. In the end, it did not
substantially affect the performance of the proposed method.

Before the proposed method can be applied at a manufac-
turing site, its limitations must be clarified. As highlighted
in the first assumption statement, numerous factors can affect
final production yield. Because the proposed method con-
siders production machines as the only cause of production
defects, failure to consider other manufacturing factors (e.g.,
human operators, raw materials, product designs, methods, and
environment) may reduce its effectiveness. Nevertheless, the
proposed method should be adequately effective when it is
applied at a well-controlled manufacturing site.

The workflow for implementing the proposed method to
detect low-yield machines can be divided into three main steps.
First, a manufacturer must control manufacturing factors, such
as human operators, raw materials, product design, meth-
ods, and environment. Second, the manufacturer must collect
approximately 6–20 times as many batches of production data
as they have production machines. If this amount of data
is difficult to collect on a daily basis, it can be collected
on a weekly basis. This factor should be considered by a
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TABLE VIII
ANALYTICAL RESULTS OF 1-WEEK (THIRD WEEK OF JULY 2018)
MANUFACTURING DATASET COLLECTED FROM A PRODUCTION

LINE OF T-COMPANY

manufacturer when determining the effective frequency with
which the proposed method is applied. Third, the manufacturer
can apply the proposed method to estimate per-machine yield
at a 95% confidence level and use a threshold to detect low-
yield machines.

In the third step of the proposed method, two configurable
parameters are used, namely, the size of a resampled dataset
and the number of resampled datasets. First, 30 resamples can
be easily generated using a moderately powerful computer.
Second, because the size of a resampled dataset should be
maximized and should exhibit adequate variance, we can usu-
ally use 80% of the records in the original dataset. However,
a resampled dataset should ideally contain approximately
6–20 times as many batches of data as there are production
machines.

Table VIII lists the analytical results of the proposed
method; these results were obtained using the 1-week man-
ufacturing datasets (specifically the third week of July 2018)
of Taiwan-based Company T, which had 250 production
machines and at least 1000 production batches. The results
reveal that for that week, only MCH007 (an automatic dry
film laminator) met the criteria for identification as a low-
yield machine. According to the simulation results, the closer
a low yield was to the yield of reliable machines, the more
difficult distinguishing between them was. That is, whether
the other machines were low-yield machines was difficult to
determine. Subsequently, engineers can assess those machines
for problems by applying a reasonable method, such as visual
inspection, RCA, or PHM (if available).

The major benefit of the proposed method is that it helps
a manufacturer to detect problematic machines quickly. By
taking propriate measures (e.g., immediate maintenance and
quick finetuning), a manufacturer can reduce the number
of defective pieces produced during their manufacturing
process. Therefore, the proposed method can increase the time-
efficiency and cost-efficiency of a production line.

V. CONCLUSION

We presented a new method for detecting low-yield
machines in a batch production system. The proposed method

uses resampling to generate numerous sets of batch produc-
tion data, performs per-machine yield estimation for each
dataset by applying a novel EM algorithm, and calculates
the confidence interval for each estimated per-machine yield
by applying the bootstrapping method. Under the proposed
method, one-sided hypothesis testing is then conducted to
generate a low-yield machine list on the basis of the confidence
intervals of the estimated per-machine yield. Subsequently, we
conducted simulations to understand the minimum require-
ments for the proposed method to successfully detect low-yield
machines. The simulation results indicate that the proposed
method can effectively detect at least one low-yield machine
after a specific amount of batch production data is collected.
Given that less production data may lead to less reliable
results, and as indicated in Table VI, manufacturers with
50–500 machines can effectively detect up to five low-yield
machines if they can collect a dataset that contains approxi-
mately 6–20 times as many batches as they have production
machines. Notably, engineers can check per-machine yield
estimations and decide whether a machine requires verification
(e.g., through visual inspection, RCA, or PHM if available)
and maintenance.

In some circumstances, a low-yield machine is not neces-
sarily a problem. Because of the nature of machines (e.g., an
automatic dry film laminator), achieving a 100% yield is an
impractical objective. Thus, if estimations based on historical
data indicate that the per-machine yield of a machine has
declined, engineers can use any feasible method (e.g., RCA
and PHM) to perform maintenance. Therefore, this study lays
the foundation for further investigations of per-machine yield,
such as those involving the use of multimodal data sources
and machine learning [21], [22]. These studies can help to
improve the performance of the proposed method in detecting
low-yield machines to obtain maintenance recommendations.
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